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Evolution of unstable shear layers in a rotating fluid 
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The time development of non-axisymmetric disturbances on a shear layer in a 
uniformly rotating fluid is studied theoretically. It is assumed that the Rossby 
number, Ekman number, shear-layer length scale, and initial disturbance ampli- 
tude are small, and that disturbances grow if vorticity transfer from the shear 
flow exceeds Ekman-layer vorticity dissipation, a mechanism investigated by 
Busse (1968). Expressions for the ultimate instability amplitude are determined 
for specified relations among the small parameters, using the volume-integrated 
energy equation, the shape assumption, and approximations for the spatial 
dependence of disturbances. Disturbance growth is limited by modification of 
the initially-unstable shear-layer profile, and the eventual amplitude is shown to  
be fairly insensitive to the specific form of the profile. Using data from observa- 
tions by Hide & Titman, the predicted maximum velocity amplitude of the non- 
axisymmetric motions for their experiments is approximately one-quarter of the 
velocity of the shear flow at  the point of maximum gradient. 

1. Introduction 
The Taylor-Proudman theorem determines the salient characteristic of small, 

nearly steady motions that are deviations from uniform rotation in a slightly 
viscous incompressible fluid. The t,heorem's requirement of two-dimensionality 
is responsible for the frequent occurrence of thin shear layers parallel to the 
rotation axis (Greenspan 1968). The shear layers have been investigated experi- 
mentally, and under certain flow conditions they are susceptible to instability. 
An interesting series of experiments by Hide & Titman (1967) demonstrated the 
breakdown of an initially axisymmet'ric shear layer into a non-axisymmetric 
flow pattern. The shear layer was generated inside a rotating fluid-filled cyliii- 
drical tank by differentially rotating a thin coaxial disk. The instability possesses 
some striking features, among them that the non-axisymmetric flow itself shows 
little variation in the direction of the rotation axis. If the disk rotates in the 
same direction as the mean rotation, the fluid motions in the non-axisymmetric 
flow consist of m vortex-like circulation cells (m < 6) arranged around the rota- 
tion axis, the pattern of cells moving relative to both disk and tank. Hide & 
Titman determined the condition for onset of the nonaxisymmetric regime as a 
relation between the Ekman number E and the Rossby number R, (see $ 2  for 
definitions), and they also gave results for the number m and for the pattern 
travel speed a t  onset. 
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An important paper by Bnsse (1 968) argued that the shear-layer instability 
exemplified by Hide & Titman’s experiments was produced by the same vor- 
ticity-convection mechanism that is responsible for instability of inviscid plane 
parallel shear flow. Development of the instability is retarded by dissipation in 
the Ekman boundary layers, an effect which is readily incorporated into the 
governing equations using boundary-layer compatibility conditions. The linear 
instability equation differs from the familiar Rayleigh equation only because of 
the cylindrical geometry. Properties of a generalized version of the instability 
equation which admits three-dimensional disturbances had been extensively 
reported earlier by Howard & Gupta (1962) and Michalke & Timme (1967). 

In view of the regularity and persistence of the non-axisymmetric flow pattern 
as indicated by Hide & Titman’s results, i t  is natural to seek to understand the 
mechanism that limits the growth of the instability. A study of the evolution of 
the shear-layer instability is germane as an indication of the effect of rotation 
on the initial stage of transition to turbulence. The theory to follow is particu- 
larly aimed a t  revealing the parametric dependence of the ultimate instability 
amplitude, and a t  producing predictions which may be tested by suitable 
experiments. The theory was in fact conceived in conjunction with a series of 
experiments a t  another institution, in which re-examination of Hide & Titman’s 
results was planned, but these experiments were terminated before sufficiently 
detailed measurements were made. An additional motivation is the possible 
operation of a similar instability in the creation and development of small but 
deadly ‘suction vortices’ near the radius of maximum azimuthal velocity of a 
tornado (Fujita 1971). 

I n  the model we adopt, instability arises in the manner described by Busse, 
when energy transfer from the axisymmetric flow by the perturbation Reynolds 
stress overcomes the perturbation energy loss to  the Ekman layers. In  spite 
of the appeal of this mechanism, the quantitative evidence for its operation in 
the Hide & Titman experiments is not compelling (see $ 6  of Busse’s paper). 
The issue is unlikely to be resolved without additional experiments, however, 
and following theory is grounded in the assumption that Busse’s ideas adequately 
describe instability onset. As the non-axisymmetric motion evolves, i t  is capable 
of modifying the axisymmetric flow through quadratic interaction terms of the 
fluid equations. The distortion of the axisymmetric flow simultaneously affects 
the development of the unstable perturbations, and a primary consequence of 
our model is that the modified axisymmetric flow retards the energy transfer to 
the perturbations. The modification of the axisymmetric flow is thus the mechan- 
ism that limits perturbation growth, a process described lucidly by Stuart (1958) 
for other stability problems. 

The axisymmetric flow on which the instability develops is generated by 
differential rotation of one of the horizontal boundaries. We assume that the wall 
motion differs from uniform rotation only in a region of small radial extent, char- 
acterized by a dimensionless length E .  Consequently, all the important energy 
transfer contributions in the instability occur in a thin shear layer, the thickness 
of which depends on the relation between the parameters 6 and E. Our results are 
appropriate for the case when E is small compared with one but sufficiently large 
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that lateral dissipation, i.e. that due to viscous terms with radial and azimuthal 
derivatives, does not enter the lowest-order dynamics of the shear layer. 

The requirement on 8 (specifically e 9 E i )  is a significant restriction, since it 
eliminates dissipation outside the Ekman layers as an effective mechanism for 
delaying the onset and limiting the growth of the instability. Obviously, lateral 
dissipation must be influential in stJabilizing the large-m perturbations at  onset 
and in determining the detailed structure of the shear layer; for the case of dis- 
continuous wall motion E = 0, the shear-layer dynamics rely entirely on the in- 
teraction of Coriolis and lateral shear forces. On the other hand, it is well known 
(see remarks by Busse) that  dynaniical theories which incorporate dissipation 
only through the Ekman layers give impressively accurate predictions for the 
actual behaviour of rotating fluids. As further justification for our assumption, 
calculations for the finite amplitude of shear-layer instabilities in non-rotating 
fluids (Schade 1964; Michalke 1965; Stuart 1967) demonstrate that in those 
problems the limiting amplitude of the unstable flow is actually independent 
of viscosity, and Stuart and Schade report some experimental agreement with 
their conclusions. If indeed the details of the shear-layer structure are not crucial 
in fixing the limiting perturbation amplitude, then it is reasonable and useful to 
examine the mathematically simpler finite-amplitude stability problem without 
the mechanism of lateral dissipation. 

The method used here for the calculation of the eventual instability amplitude 
was developed by Stuart (1958) and centres on the volume-integrated perturba- 
tion energy equation, supplemented by an equation for the azimuthally-averaged 
flow and the ‘shape assumption ’ for the spatial dependence of the perturbation. 
The so-called Stuart-Watson (1960) procedure, and other more recent methods 
based on their formalism, are not applicable to the present problem. The reason 
is that  there are no known everywhere differentiable, neutrally-stable solutions 
of the linear stability equation (2.2 1 ). The available piecewise-smooth solutions 
are unsuitable, because the nonlinear terms intensify the singularities in higher 
approximations to the solutions. Use of even the more primitive method in this 
paper depends crucially on the azimuthally-averaged equation (2.13) which 
governs the subsequent evolution of the initially unstable azimuthal velocity. 
The corresponding equation for inviscid non-rotating flow requires that the 
perturbation Reynolds stress vanish a t  equilibrium. In the absence of rotation, 
it is therefore necessary to use a method of the Stuart-Watson type to investi- 
gate the amplitude limitation mechanism. 

The shape assumption and amplitude calculations require approximations 
for the spatial form of the unstable eigenfunction and for its growth rate close to 
onset conditions. These are obtained by adapting the long-wave approximation 
procedure of Drazin & Howard (1962) to the present problem. The thinness of 
the shear layer produces a physical situation for instability waves of moderate 
rn which is analogous to that experienced by long waves on a moderately thick 
shear layer. The solution is found by expanding in the two parameters .c and E* 
while exploiting the assumption Ei  < E .  The parameter R, is assumed O(E*) in 
accord with Busse’s theory; Hide & Titman’s experiments predict the exponent 
4 instead of &, although their parameter definitions differ slightly from Busse’s. 

19-2 
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The validity of our particular expansion procedure requires the characteristic 
amplitude scale 13 of the initial perturbation to satisfy 6 = O(E) ,  but such a re- 
striction is not unexpected and is typical of perturbation schemes for weakly 
nonlinear equations. 

In  $ 2  the equations for the averaged flow and linear stability problem are 
derived, while the former is simplified, solved, and combined with the volume- 
integrated perturbation energy equation in § 3. Approximations for the spatial 
form of the unstable perturbation and its growth rate are obtained in $4. The 
equation governing the limiting amplitude of the perturbation is derived in 
3 5 ,  and the results are summarized and discussed in $ 6. 

2. Formulation 
We consider a homogeneous fluid of unit density and kinematic viscosity 11,  

contained between two rigid parallel infinite disks which are separated by a 
clistance H and are rotating with angular velocity Q about their common axis. 
The fluid pressure p and velocity u are measured relative to a co-rotating cylin- 
drical co-ordinate system, and the velocity components in the radial ( T ) ,  azi- 
muthal (O), and vertical ( z )  directions are u, v,  and w, respectively. We non- 
dimensionalize the variables r, u, p ,  and time t by H ,  wH2,  and Q-lT-l, where 
0) is a temporarily unspecified characteristic angular velocity magnitude and T 
is a dimensionless scaling factor. Then u and p satisfy the Navier-Stokes equa- 
tions, written here in dimensionless variables, 

Tu, + R,(u.V) u + Zk x u +Vp = E V U ,  (3.1) 

v .u  = 0, ( 2 . 2 )  

wherein the parameters R, = uQO1 (Rossby number) and E = v(rH2)-l  (Ekman 
number). 

We are interested in the stability of a class of flows which are approximate 
solutions of (Z.l)-(2.Z) for certain ranges of small values for R, and E .  The basic 
flow is generated by differential rotation of the upper disk, so that no-slip 
boundary conditions have the dimensionless form 

u=O a t  z = O ,  
(2.3) 1 u = ~ , . ( r )  8 = r Q , ( r )  8 a t  z = I .  

The dimensionless wall angular velocity Q,,, is normalized so that its maximum 
value is unity, choosing the scale w to be the actual maximum value of the 
dimensional wall angular velocity. The function Q,,, is the step function H(n - T )  

in the model of Stewartson (1957), and a step function is also an appropriate 
representation of the experimental configuration of Hide & Titman (1967). 
There are experimental difficulties in producing any disk motion other than a 
step function or a sum of step functions. Nevertheless, an important element of 
the present model is the assumption that the wall angular velocity can adopt a 
somewhat different form which is specified in 54. Roughly speaking, R,, is 
regarded as a function of ( r  - a) /€ ,  where 6 is small compared with one but large 
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is essentially constant outside a neighbourhood of compared with Ei ,  and 
r = a,. 

We suppose the velocity and pressure fields are written as 

is the azimuthally-averaged velocity field. The parameter 6 is the ratio of the 
characteristic amplitude of the non-axisymmetric perturbation fields to the 
axisymmetric averaged fields, and is presumed small compared with one. Using 
(2.4) in (2.1)-(2.2) and hereafter dropping the primes on the perturbation fields. 
the governing equations are 

TU, + R,[U .VU + 8'~- + 2k x U +VP = EV2U, (2.5) 

r-l(rU),+ w, = 0,  (2.6) 

v . u  = 0. (2.8) 

Tu, + Ro[U .VU + u .VU] + R , ~ [ u  .VU - u .VU] + Zfc x u +Vp = EV2u, (2.7) 

I n  the regime of small E,  Ekman boundary layers are formed on the disk surfaces, 
and as is well known conditions (2.3) can be replaced by compatibility conditions 
satisfied by the velocity fields outside the Ekman layers (Greenspan 1968, 

W = $ E k l ( r V ) ,  at x = 0, p. 92)) 

W = - &Eb-l(rV - rVw), a t  z = 1, (2.9) 

w = & $Ek-l  [(rw),- us] a t  z = + & $. (2.10) 

The velocity is of course required to be bounded for large r .  
Consider first the equations for the averaged flow. Because the boundary 

conditions are time-independent, initial conditions can be selected so that time 
variation of the averaged flow arises only from the third term in (2.5), and we 
can then require T to  be small as well as R, and E .  From (2.5) and (2.6) we readily 
verify that the largest non-vanishing components of velocity and pressure have 
the properties q = 0, v, = 0, P, = 0, w,, = 0, (2.11) 

and, using (2.9) and (2.6)) 

(2.12) 
w = EW(r[+V+x(&V-- V)]),,  
u = EB(V-&Vw). 

Equations (2.11) and (2.12) represent the information available in the largest 
terms of (2.5) and (2.6). To obtain an equation governing the 0 ( 1 )  component V ,  
we use (2.11) and (2.12) in the azimuthal component of (2.5) and retain smaller 
terms : 

Tx+ R,E*(V- iVJr-1 (rV) ,+RoS2[ur- l (rv) ,+$r- l (~~ 
- + WV,] + 2E4( v - &V,) = E(r- l(r V)&. 
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Following Busse, we define P = ROE$ and assume 
equation becomes 

= O(1) as R, + 0,  so this 

2 v = q,, -PP[ur-l(rv), +==I + EJ(r-l(r Q),. 

- R,( V -  4 V,) r - l ( ~ V ) ~ -  TE-IV. (2.13) 

In  view of Busse's paper, we shall only briefly consider the equations for the 
perturbation fields. With the asymptotic relation R, = O(E4) it is appropriate 
to expand the pert,urbation fields as 

u = uO+R,U'+ ..., p = p O + R o p l +  ..., 

and to  investigate instability with T = R,. Then (2.7) and (2.8), along with 
U = ~ ( r )  6 + O ( E t ) ,  give 

uo = ;k xvpo, p: = 0, (2.14) 

u! + Vr-lu; + [ - 2r-lVv0? + r--l(rV)+uo6] + 2 f  x u1 +Vpl = 0, 

r -y rd ) r  + r-1v; + w; = 0, 

(2.15) 

(2.16) 

and, with (2.14), (2.10) becomes 

w1 = f iP-'V2pO at z = 4 k 4. (2.17) 

Combining (2.14) -(2.17), we obtain Busse's equation 

V*pp + r-lVVZp$ - r-lp$(r-I(r V),.)r + 2B-1V2pO = 0. (2.18) 

Wavelike solutions of (2.18) have the form 

po(r ,  8, t )  = Re { ~ ( r )  exp (i(m8 - ut ) ) } ,  (2.19) 

and with the definitions 

mc = w + ZiP-1, Q ( r )  = r-lV(r), $ ( r )  = R(r) - c ,  (2.20) 

(2.21) 
(2.18) becomes $(x" + r-lx' - mzf-2X) - ($" + 3r-l$') x = 0. 

Boundedness conditions must be satisfied by solutions of (2.21) at r = 0 and 
as r + 00. Our initial perturbation is taken in the form (2.19) for some m and cor- 
responding X(r).  The parameter 6 may therefore be defined as equal to, or 
(depending on the normalization) proportional to, the pressure maximum. 

It is worth remarking that two possibly important effects in (2.7) are omitted 
in (2.18). The nonlinear terms in (2.7) generate harmonic components of the wave 
disturbance (2.19), and their neglect cannot be justified for sufficiently large 
perturbation amplitude. The neglect of the right side of (2.7) requires that spatial 
gradients of the perturbation are not too large. If the perturbation varies on a 
length scale as small as O(Ea),  then dissipation outside the Ekman layers is for- 
mally comparable to the convection and Ekman dissipation effects retained in 
(2.18). 
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3. Energy equation for the disturbance 
A disturbance in the form (2.19) will grow in time if Im w is negative. Busse 

(1 968) found the dispersion relation, and demonstrated instability for certain 
angular velocities n ( r )  which are combinations of constants and terms propor- 
tional to r-2, for which the second group of terms in (2.21) vanish. Michalke & 
Timme (1967) analysed other models similarly, and in addition verified instability 
for a profile a(r) for which (2.21) does not reduce to a simple equation for x. 

With the possibility of instability clearly established, for some m and p at 
least, we seek to understand the mechanism which limits the growth of the per- 
turbation by using a procedure devised by Stuart (1958). The energy equation 
for the disturbance is found by dotting (2.15) with uo and integrating over the 
flow domain, 

Using (2.14), (2.16), (2.17) and the boundedness conditions in r ,  (3.1) becomes 

Equation (3.2) expresses the rate of change of perturbation energy in terms of 
dissipation due to the Ekman layers and work by the Reynolds stress on the 
averaged angular velocity shear. 

An expression for the evaluation of the averaged angular velocity is provided 
by (2.13). Now in accord with our assumption that near r = a derivatives of aW 
are O(6-l) with e-l< E-k, we expect that derivatives of V are O(6-I) as well, 
so that the third term on the right side of (2.13) is small compared with the terms 
2V and V,. We note that an expression for V can be obtained from (2.13) even 
with the inclusion of this term (i.e. with 6 = O(EP)), but we do not pursue this 
case. In  addition, the fourth term of (2.13), which represents radial convection 
of the averaged shear, is small, O(R,e-l), under the conditions already imposed. 
We retain the second terms on the right side of (2.13) in the form 

- /3S2u0r--l(rvO),., 

which formally imposes the requirements 

O(uov:). 62 max ( E k 2 ,  R o c 1 )  = ( E ~ c - ~ ) ~ ,  (3.3) 
so that the orders of the terms retained are larger than those omitted. 

In  the original applications of his method, Stuart (1958) argued that terms 
analogous to the last term in (2.13) could be ignored in computing the equili- 
brium disturbance amplitude. We make the conservative estimate T = R, 
to examine its effect. Then the solution of the simplified version of (2.13) is 

V(r,  t )  = +Vw(r) - 62 exp { - 2tP-l) u0r-l(rvo), exp { Z s P - 3  ds, (3.4) 1: 
and the solution for any initial condition other than V ( r ,  0 )  = +Vw differs from 
(3.4) by a transient exponential. 
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We can determine the time evolution and limiting amplitude of the perturba- 
tion by using (3.4) in (3.2), knowing expressions for the perturbation velocities. 
Following Stuart, we make the ‘shape assumption )) in which the perturbation 
velocities in the unstable or supercritical parameter regime are assumed to have 
the same spatial forms as those of the critically unstable motions. This approxi- 
mation is of crucial importance. Its justification is possible only a posteriori, but 
more widely-used methods, such as the harmonic-generation Stuart-Watson 
scheme, rely on the ability of the critically unstable eigenfunctions closely t,o 
approximate the slightly supercritical ones. Moreover, the spatial integrals used 
along with the shape assumption could be expected to mitigate the effect of 
deviations from true supercritical solutions. 

Consistent with (2.14) and (2.19), we therefore assume the forms 

P o  = R e { A ( t ) X ( r ) e x p { i ( m e - w R t ) } } ,  
ZLO = Re(A ( - z )xexp{ i (mO-wR1)} ] . /  mi 

(3.3) 

vo = Re { A  ax’ exp {i(mB - w,t)}} ,  I 
where wR is Re w at, critical condit,ions and X(r)  satisfies (2.21) with $ ( r )  = an, - c .  
Using (3.4) and (3.5) in (3.2) and performing the &averages yields 

t 

0 
-~62meA2(t)exp{-2LB-1}I,/ A2(s)exp{2s/3-1}ds = 0, (3.6) 

where (3.7) 

The time development of the perturbation amplitude A(t )  will follow from (3.6)) 
after an expression for the spatial dependence X(r )  is obtained and (3.7)-(3.9) 
are evaluated. 

4. Approximate spatial dependence of the wave disturbance 
As far as the author is aware, no closed-form expression is known for a solution 

of (2.21) corresponding to a neutrally stable disturbance of an everywhere 
differentiable $ ( r ) .  There is a t  least one such solution for the Rayleigh equation 
analogous t,o (2.21) in Cartesian co-ordinates (see Drazin 8: Howard 1966; 
Michalke 1964), but along with other disadvantages, its use for the evaluation of 
(3.7)-(3.9) would restrict our analysis to a very specific wall profile QU,(r).  Known 
solutions of (2.21 ) for continuous but only piecewise differentiable $(r)  (Michalke 
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& Timme 1967; Busse 1968) are also unsuitable for our purposes, since all the 
contributions to (3.9) occur a t  points where the integrand has non-integrable 
singularities. To avoid the remaining alternative of a numerical determination 
of x, and thereby to  keep the calculations both reasonably simple and somewhat 
insensitive to the precise form of Q,, we exploit an approximation scheme ana- 
logous to that used by Drazin & Howard (1962) for the Rayleigh equation. 

It is now necessary to specify more carefully the properties of the class of 
smooth functions Rw we shall consider. The indispensible assumption is that 
ClW depends on a small parameter e such that wherever ria - 1 = O( 1 )  as e --f 0, 
the asymptotic expansion of R, in powers of E is a constant, i.e. R, deviates from 
a constant only by terms such as exp{-r/e} or r--llz which have asymptotic 
expansion zero. An additional convenient assumption is that 

$ ( r )  = @2,(r) - c s (D(e-lIn ( r / a ) ) ,  

where CD is a function (e.g. a hyperbolic tangent) which approaches a constant 
as its argument tends to fa. The usefulness of this second assumption will 
become apparent in the next paragraph, and its non-necessity is discussed later. 
For r ia-  1 = O(1) the second group of terms in (2.21) are thus negligibly small, 
so we can approximate the solution by 

where we have chosen the value of $ at r = 0 for the normalization of x (Q(0) 
is of course essentially $(a - - ) ,  and $(a) is $(a+)) .  We must next obtain an 
approximation for x in ria - 1 = o(l), then match these solutions smoothly; 
and completion of the matching produces an approximate determination of the 
eigenvalue c and constant K .  

For the inner region ria- 1 = o( l ) ,  we f i s t  transform (2.21) to the variable 
7 = s-lInr/a, so that for the solution X(r)  = i ( 7 )  we have 

(4.2) @(e-z;t” - &i) - (s-2@” + 2e-l@’) x; = 0, 

The reason for introducing the logarithmic transformation is to avoid difficulties 
of non-uniform validity in the subsequent perturbation expansion for ,? which 
would arise if, e.g., the variable c- l ( r /a  - 1) has been used instead. The matching 
conditions for (4 .2)  are 

; t + $ ( O ) ,  ;L7’+srn$(O) as q+-co, 

j + K ,  .y’-+-srnK as v-+co. (4.3) I 
Again to avoid non-uniformity we seek solutions in the form 

2*(7) = exp { r w) $*(7) for n 2 0, (4.4) 

a($; T 2me$;) - (W’ + 2 e W )  $* = 0, (4.5) 

(4 .6)  

and (4 .2)  and (4.3) become 

$ - + $ ( O )  = @(-co), $:-to as q-+-a, 
$+-+K, $;-to as y - + a .  
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If we expand the functions $* in series 

@* = $O++E@.:+€2@:+..., (4.7) 

we can obtain the @; successively. It is clear that, if we had not, specified the 
convenient dependence of $ ( r )  on the combination E - ~  ln ( r /a) ,  t,hen under the 
change of variable from r to 7, $ ( r )  would become a function F(7,  E). The function 
F would have t,o be expanded in a series like (4.7), and the corresponding problems 
for @; would have additional terms from the Fn(7);  but we do not pursue this 
case here. 

One matching procedure is to apply the conditions to $* as 7 --f k co, respec- 
tively, then use connexion formulae 

Z + ( O )  = ,f-(O), ?+(O) = $-(O) 

to determine K and c. We follow instead an alternative procedure (Drazin 8: 
Howard 1962) of normalizing ;17*(7) separately as 7 + f co, and requiring these 
two solutions to be linearly dependent (i.e. to be different representations of the 
same eigenfunction on ( - co, 00)). This device simplifies the calculations, because 
it allows us to specify the convenient value 

(4.8) K = $(a) = @(a), 
and because the eigenvalue relation f+?- - & f -  = 0 may be evaluated a t  the 
point 7 = 0. In  terms of the @’s this condition is 

@ + ( O )  @\P) - @r;(O) @ - ( O )  + 2mE@+(0)@-(0) = 0. (4.9) 

Carrying out this programme, we use (4.7) in (4.5) to obtain 

[@2[@p/@]‘]’ = 0, (4.10) 

(4.11) 

(4.12) 

[ ~ [ ~ ~ Q I ’ I ’  = - ~ 3 / [ @ 3 = m - - l  [ [ ~ p l - ~ p q ’ ,  
[w[@; 01 ’ 3  ’ = - @3/[9: 3 ~2m-1[[@; 3 7 *mi ~1 8 .  

With (4.6) and (4.8), the solution of (4.10) is 

@: = @,(a)* (4.13) 

Equations (4.1), (4.4), (4.8) and (4.13) give an adequate approximation to  the 
spatial form of the eigenfunction for use in (3.7)-(3.9). However, (4.13) ident- 
ically satisfies (4.9) to O ( E )  terms, so i t  is necessary to find higher-order terms in 
(4.7) to obtain an approximation to c .  Since effects of cylindrical geometry appear 
in the O(e)  terms of (4.5), i t  is apparent that curvature will affect the eigenvalue. 

The solutions of (4.10) and (4.11) that satisfy (4.6) are 

(4.14) 

- ( 1  ~ n i )  @-2(71)/h [ Q 2 ( r z ) - W (  k ~ o ) ] d 7 ~ ] .  (4.15) 
f m  
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Now using (4.7) with (4.13)-(4.15) in (4.9), we find, after some straightforward 
calculations, 

x [@2(r1) - 42(00)1 [Q2(rl) - 42(0) l }d~1 + Ok3) = 0. (4.16) 

If Q,(O) f Q,(co) (the 'shear-layer' case in Drazin & Howard), then (4.16) 
gives the approximation 

mc = $ [ ( m  + 1) Q,(co) + (m- 1) Q,(o)] i i(m2- 1)s [Q,(co) - Q,(o)] + O(e) .  
(4.17) 

In the 'jet' case Q,(O) = Q,(co) (a constant which can be taken zero by a different 
definition of the angular rotation of the co-ordinate system), (4.16) becomes 

We shall not make use of this result, which is included to indicate the extension 
of Drazin & Howard's formula (2.10) to this problem. 

5. The equation for the perturbation amplitude 
We use the approximations for X(r) developed in the preceding section for the 

evaluation of the largest contributions to (3.7)-(3.9). From (4.1) it is clear that 
all the contributions to (3.8) and (3.9) occur in the region r = O(1) of non- 
vanishing perturbation Reynolds stress. Moreover, (3.7) is O(e-l) because of the 
0(c2) term ( x B ) ~  integrated over the variable 7. The important estimates we 
require are, for the region 7 = O(l ) ,  

% dr = c-1r-lexp { - me17 I> @ ~ ( 7 )  + 0(1), 

'2 = e-+2exp{-melrl> @~(7)+0(e-1). (5.4) 

(5.3) 

The derivative d$I/dr will be a t  most 0(1), so that for 7 = O(l) ,  the second 
term in f(x) is dominated by the first, XIdXR/dr.'Similarly, XId2XR/dr2 over- 
whelms xR d2XI/dr2a)nd r-lf(X) in the integrand of (3.9). 

Changing variables from r to 7 in (3.7)' noting dr = erd7, and using (5.3), we 
find 

m 

I~ = e-1J - m  exp(-2melr1)(<~~)2dy+0(1).  

I 2 -  - - e-lcI/ exp {-- 2mel7l) (@k)2ddy + o(I). 

(5 .5 )  

Also, (5.2) and (5.3) in (3.8) give 
m 

(5 .6 )  
- m  



since, from (8.5)-(5.7), 
1, = E - 1 - 4 ,  + O( l), 
12 = - C J ,  + U(  l ) ,  
13 = - (c,)2€-3a-4A2 + O(c-2). 

(5.9) 
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(iii) A class of profiles for which the required integrals are elementary is 

(6.10) 

where a > 4 and I, = exp{- Itla>& = 2a-lr(a-1). 

The integrals in (5.8) are 

so that 
A - 2-(2+z-l) and A - 2-C-z-l) r(a-1) r(2 - a-l), 

1 -  2 -  

&! = 22o~-'r(a-~)r(2-a-l) ( R  = 22a_1(l-a-1);rrcosec;rra-l for a > I) .  

This ratio increases as a decreases to  -& because of the cusp in the second deri- 
vative of Q a t  7 = 0, and it increases as a increases to co because of the sharpening 
ofthe profile near 7 = Iil. For a = 1 this is of course example (i); for a = 2R 
is ;rr; and rough calculations indicate the minimum value of R is about 3-0 near 

Other examples involving functions similar to those above have been evalu- 
ated, and the results affirm that R = 4 is a representative choice for the profile 
conditions under consideration. 

~ 1 .  = 1.6. 

With (5.9) and the definition B(t) = A2(t) ,  (3.6) becomes 
t 

$B'(t) - o, B + K B  exp { - 2tp-l} [ B(s) exp (2sp-l) ds = 0, (5.11) 

where 

from (2.20). Equation (5.11) is equivalent to the second-order autonomous system 

(5.12) 

with (B, C) a t  t = 0 equal to (B(O), 2wIB(0)). The origin in the B, C plane is a 
second-order singular point of (5.12), and its instability for o, > 0 is presumed, 
in view of (5.11). The only other singular point of (5.12) is ( ~ W ~ P - ~ K - ~ ,  O), and 
for wI > 0 a short calculation shows it  is a stable spiral (or > (4P)-l) or a stable 
node(@, < (4p)-l). 

The predicted equilibrium squared amplitude Be = A: toward which the per- 
turbation tends therefore satisfies 

(5.13) 

Equation (5.13) is written in this form to indicate that 6 = O(s)  is a consequence 
of our perturbation solution. It is a straightforward matter to  verify that our 
perturbation scheme is consistent, by re-examining the derivation of (5.13) 
with 6 = O(s)  ab initio. Furthermore, (5.13) emphasizes that SA,, rather than 
6 or A, individually, is the quantity of observational interest. The prediction of 
&A, could be checked experimentally if e.g. the maximum radial velocity is mea- 
sured in one of the vortices of the instability pattern, and (5.13) is used along with 
results from §§3 and 4 for the velocity solution. We note finally that, for the 
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profile conditions Q,,(O) - 1 = Q,,,(co) = 0, (5.13), along with (4.17), (2.20), and 
R = 4, gives 

(5.14) 

It is worth mentioning that (5.13) is also the equilibrium point for the ana- 
logous perturbation amplitude equation when (2.13) for the averaged flow is 
solved without the time-derivative term (see discussion preceding (3.4)). This 
conclusion is not unexpected for our model, but i t  serves to substantiate the 
neglect by Stuart (1958) of similar terms the effects of which on his calculations 
could not be fully assessed. The time-derivative terms will of course modify the 
approach of the perturbation amplitude to A,, as illustrated by the predicted 
overshooting of A,  as t evolves for wI > (4P)-'. 

6. Discussion 
We first want to indicate the use of (5.13) or (5.14) in the comparison of the 

theory with the actual evolution of shear-layer instabilities. Among the quantities 
of experimental interest are the distribution of perturbation Reynolds stress, 
the distorted averaged velocity profile, and the amplitude of the instability 
vortices relative to the averaged flow. There are unfortunately no suitable data 
with which we can directly compare our predictions, but we can use the best 
currently available data (from Hide & Titman) to  obtain some predictions of a 
quotient Q .  Q is the maximum speed in the equilibrium vortices outside the shear 
layer divided by the shear-layer velocity at r = a in the absence of non-axisym- 
metric perturbations, i.e. 

maxwH&[u2+v2]'1,, 
( r .  0)  

wHV(a)  (6.1) Q =  
With (4.1), (4.8) and (4.17), the function X(r) outside the transition region is 

From (3.5) the perturbation radial velocity is 

(9- 2 a) ,  
and the azimuthal velocity v differs from u by a phase of & 
according to our approximations, 

for r 2 a. Hence, 

where 7 = mO-wRt+tan-l (=':)". - 
and, using the similar expression for v(r, 0, t + oo), we have 
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Hide & Titman’s shear layer was driven by a co-axial disk, which is equiva- 
lent to a wall velocity V, = rH(a--r). From calculations by Stewartson (1957), 
it is known that the thickest part of the shear layer from such a wall velocity has 
the form 

V ( r )  = ~ r H ( a - r ) + ~ a [ s g n ( r - a ) l e x p { - 2 t E - ~ [ r - a [ > .  (6.3) 

To apply the results from our model, we must identify the analogous wall angu- 
lar velocity SZ,  which in the absence of perturbations would produce the velocity 
V ( r )  in (6.3). From (3.4) it is clear that 

Q,(r) = H ( a  - r )  + fr[sgn ( r  - a)]  exp { - 24E-tIr - a ] } .  (6.4) 

Moreover, we may identify E from the definition of the function Q(7) and its 
normalization, 

I d o  1 -- 1?/,=, = Z&I7=, = -- 1 (6 .5)  
E = (uSZL(U)I-~ = 2 k 1 E f .  2Ea.r 

As anticipated, the value for E in (6.5) is just outside the range forwhich our theory 
was derived; nevertheless, we use our formula to exploit Hide & Titman’s data. 

Using (5.14), (6.2),  (6.3) and (6.5) in (6.1), we obtain the following expression 
for Q in terms of the growth rate wI and other parameters: 

We observe that the growth rate increases nearly linearly with m, while the 
explicit dependence of Q on m is slight. The growth rate is independent of a, and 
Q is inversely proportional to a because the axisymmetric shear flow a t  r = a in- 
creases with disk radius. The variation of Q with E and R, is similar to, but not 
identical with, the variation of w, with these parameters. 

With data from Hide & Titman’s table A 1 and the relationships 

connecting Hide & Titman’s (subscripted) parameters with ours, we can evalu- 
ate (6.6).  The results in table 1 show that Q decreases slightly as a increases, as 
expected, and that Q has very little dependence on m in spite of the strong varia- 
tion ofw, with m. Table 1 indicates that the ‘strength’ of the instability vortices 
is approximately one quarter of the speed of the basic flow, and this fraction is 
representative over a significant range of onset conditions. 

The information obtained from approximations derived in $ 4  for the linearly 
unstable solutions represents another contribution of this paper. Equation (4.17) 
for the phase speed and growth rate of the unstable waves is independent of 
details of the profile shape and relies only on the large velocity derivative in, or 
the thinness of, the shear layer. It is easy to show that formulae (5.3) and (5.7) 
of Busse for particular shear-layer profiles reduce to our results, if Busse’s para- 
meter y = (rl/r2)2 is set equal to 1 - E and E is nearly zero. 
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2.50 2 
2 
3 
3 

3.75 2 
3 
3 
4 

5.00 3 
4 
5 

6-25 4 
5 
5 

7.25 4 
5 
6 

44.6 21.8 
19.2 12.5 
14.0 10.4 
11.8 8.2 
19.3 12.7 
13.0 10.9 
8.85 8.3 
5.32 6.3 
7.46 7.3 
3-61 5.3 
2.94 4.5 
4.7 1 5.9 
3.18 4.6 
2.37 3.9 
4.61 5.8 
2-25 3.9 
1.62 3.2 

0.37 
0.36 
0.63 
0.62 
0.33 
0.60 
0.60 
0.86 
0.55 
0.83 
1.07 
0.79 
1.03 
1.02 
0.8 1 
1.06 
1.31 

0.30 
0.26 
0-28 
0.29 
0.25 
0.26 
0.24 
0.22 
0.23 
0.22 
0.23 
0-23 
0.24 
0.22 
0.23 
0.22 
0.22 

TABLE 1.  Data in columns 1-4 from table A 1 of Hide & Titman (1967) : 
columns 5 and 6 from (6.6).  

Moreover, (4.17)shows that the wavenumber m = 1 is stable under our assump- 
tions, in accord with Busse's examples and with comments by Michalke & 
Timme (1967) (the latter, incidentally, show by their example (4.1) that discon- 
tinuity of V ( r )  can destabilize m = 1 ) .  The result cR = & (1 - l/nz), which follows 
from (4.17) with Q,,.(O) = 1 and Q,.(m) = 0, shows qualitatively the same de- 
pendence of wave speed on wavenumber as observations by Hide & Titman 
(their figure 10). Finally, we mention that the principal geometric curvature 
effects have been retained in our approximations for the linear wave speeds and 
growth rates, unlike the comparison by Busse (his figure 3), in which curvature 
effects are included in an entirely ad hoc manner. 

Certain features of the observations by Hide & Titman have not been ade- 
quately described by the linear instability theory we have assumed. One issue 
concerns the instability onset condition of R, = O(E*), for which Hide & Titman 
suggest instead the exponent $, while Busse gives an exponent Q .  Part of the 
difference between 4 and $ may be due to the parameter definitions of Hide & 
Titman. Busse's condition is actually R, = O[Eh( 1 -?)I, with (1 - y )  = O(E4) 
for the most unstable waves. The linear theory of 94 has, of course, the same 
property, that  the most unstable wavenumber is comparable to the shear-layer 
width. Hide (1973, private communication) indicated that there is no firm 
experimental support for Busse's contention of the exponent 34. In any case, 
additional experiments would be highly desirable to confirm the onset condition 
and to determine the growth rate as a function of wavenumber. Other defects 
of the linear theory include the form of the predicted shape of the unstable wave 
and the failure to produce the observed onset wavenumber m. The latter diffi- 
culty might be resolved with a numerical solution of the perturbation equation 
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with lateral dissipation included, as is appropriate in the case B = O(E4). A 
simple model of this effect is obtained by adding a term - m2pV2p0 to the right 
side of (2.18), and the most unstable wavenumber is then m, = [I + (1 / (4 ,~~)~]3 .  
This mechanism is presumably a t  work to select the wavenumber a t  instability 
onset. 

Apart from these deficiencies of the linear instability theory, the most 
serious limitation on the results of our analysis is the restriction E: % Ei.  Although 
this condition is violated by laboratory experiments with discontinuous wall 
velocities, it may be relevant to some geophysical situations; and it is a reasonable 
approximation, if the smoothing mechanism of the averaged flow is not dynami- 
cally significant to  the instability. The case B = O(Ef) was not pursued, to  
consider a simple theory without the lateral dissipation mechanism. The follow- 
ing modifications and extensions of the theory have been made through some 
additional calculations: allowing smooth variation of the function F (in $4) 
with 71; adding side walls to  the flow domain; and including the lateral dissipation 
term in (2.13). 

This research was supported by the Army Research Office, Durham, under 
grant DA 31-124 ARO-D-269. 
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